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Lake DE, Moorman JR. Accurate estimation of entropy in very
short physiological time series: the problem of atrial fibrillation
detection in implanted ventricular devices. Am J Physiol Heart Circ
Physiol 300: H319-H325, 2011. First published October 29, 2010;
doi:10.1152/ajpheart.00561.2010.—Entropy estimation is useful but
difficult in short time series. For example, automated detection of
atrial fibrillation (AF) in very short heart beat interval time series
would be useful in patients with cardiac implantable electronic de-
vices that record only from the ventricle. Such devices require
efficient algorithms, and the clinical situation demands accuracy.
Toward these ends, we optimized the sample entropy measure, which
reports the probability that short templates will match with others
within the series. We developed general methods for the rational
selection of the template length m and the tolerance matching r. The
major innovation was to allow r to vary so that sufficient matches are
found for confident entropy estimation, with conversion of the final
probability to a density by dividing by the matching region volume,
2r". The optimized sample entropy estimate and the mean heart beat
interval each contributed to accurate detection of AF in as few as 12
heartbeats. The final algorithm, called the coefficient of sample
entropy (COSEn), was developed using the canonical MIT-BIH da-
tabase and validated in a new and much larger set of consecutive
Holter monitor recordings from the University of Virginia. In patients
over the age of 40 yr old, COSEn has high degrees of accuracy in
distinguishing AF from normal sinus rhythm in 12-beat calculations
performed hourly. The most common errors are atrial or ventricular
ectopy, which increase entropy despite sinus rhythm, and atrial flutter,
which can have low or high entropy states depending on dynamics of
atrioventricular conduction.

heart rate; heart rate variability; statistical analysis

PATIENTS WITH REDUCED CARDIAC FUNCTION receive cardiac im-
plantable electronic devices (CIEDs), such as implantable
cardioverter-defibrillators, to prevent sudden death due to ven-
tricular tachycardia or ventricular fibrillation, but they also
commonly develop atrial fibrillation (AF). This irregular
rhythm, which often develops or is recognized only after
device implantation, can lead to stroke and other clinical
deteriorations and often mandates new therapies with antico-
agulation or drugs to control the heart rate or to restore sinus
rhythm. Diagnosing AF using a single-lead CIED (from which
only ventricular electrographic recordings and RR intervals,
the times between heartbeats, are available) is an important
clinical goal but is not currently available, perhaps because the
limited processing capacity of these devices puts a premium on
efficient detection. For this reason, we studied the clinical
problem of AF detection using very short RR interval time
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series; we felt that diagnosis using only 12 beats was a clinical
imperative.

The hallmark of AF is its irregularity. The nonsensical
descriptor, “irregularly irregular,” that clinicians use under-
scores this fundamental difference from normal sinus rhythm,
and we expect RR interval time series in AF to have higher
entropy than ventricular tachycardia or sinus rhythm. In this
context, the meaning of entropy follows the work of Shannon
(21), Kolmogorov (8, 9), Sinai (22), Grassberger and Procaccia
(4), Eckmann and Ruelle (2), and others, who conceived of
entropy as a measure of the degree to which template patterns
repeat themselves. Repeated patterns imply order and lead to
reduced values of entropy. Estimates of entropy, such as
sample entropy (SampEn), rely on counts of m-long templates
matching within a tolerance r that also match at the next point
(12, 19, 20) and have found utility in predicting infection and
death in premature infants (5-7). More formally, entropy is the
negative natural logarithm of the conditional probability that any
two sequences of length m that match within tolerance r will also
match at the m + 1st point. Counting the number of times that
templates find matches is the central activity of entropy estima-
tion, and the result is a ratio: the number of matches of length
m + 1 divided by the number of matches of length m. More
matches means more confident estimation of this ratio and, up
to a point, better entropy estimation.

In long heart rate records, when matches abound, entropy
measures distinguish AF well from sinus rhythm (1). There is
a challenge, though, in assuring a sufficient number of matches
when the data sets are short. Thus, for the rapid diagnosis of
AF using entropy estimation, the selection of the parameters m
and r is critically important. If m is too large or r is too small,
then the number of template matches will be too small for
confident estimation of the conditional probability. If, on the
other hand, m is too small and r is too large, then all templates
will match each other, and there will be no discrimination
among rhythms. We and others (12, 17) have suggested strat-
egies such as picking m based on the autocorrelation function
and picking r based on minimizing the error of the entropy
estimates.

Of these, the larger problem in implementing entropy esti-
mation is picking the value of the tolerance r. The original
recipe has been to select r as 20% of the SD of each time series
segment, based on the “preliminary” conclusions of Pincus
(14) in 1991 for implementing approximate entropy (ApEn)
calculations. Systematic approaches to picking r have been
presented and are usually based on the analysis of relative
errors in large data sets (12, 17). An important new insight,
though, was presented by Lake (11) in 2006, who approached
the problem from the standpoint of stochastic processes and
applied concepts of probability density estimation. The direct
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result was to convert the measured conditional probability to a
density by normalizing to the volume of the matching region,
or 2/ , an operation that reduces to adding In(2r) to the
entropy estimate. The result, called the quadratic sample en-
tropy (QSE) (11), allows any r to be used for any time series
and the results compared with any other estimate. This ap-
proach frees the investigator to vary r as needed to achieve
confident estimates of the conditional probability (CP) and is
an important component of our new approach to AF detection.

These considerations led us to develop an entropy parameter
that is optimized for the rapid detection of AF with rapid heart
rates. We call it the coefficient of sample entropy (COSEn).
The major improvements include flexibility in the choice of r
and the use of the heart rate itself in the calculation. We
evaluated this new measure with a clinician’s eye, in particular
with regard to records with atrial flutter (AFL). This rhythm
can produce very regular RR intervals when in a stable n:1
conduction regime, but is clinically treated much like AF.
Thus, we categorized AFL as AF, even though its regular and
low-entropy RR interval time series are very different from
irregular, high-entropy AF. Throughout, we analyzed AF and
AFL together, although the diagnostic performance of any
algorithm would improve if we excluded AFL. We note that
the episode-by-episode comparison algorithms specified by the
current American National Standard for ambulatory ECG an-
alyzers (ANSI/AAMI EC38:1998) do not include AFL seg-
ments in the evaluation process, emphasizing the difficulty of
diagnosing atrial rhythms from ventricular beats. We felt that
our approach more closely mimicked real-world management
problems.

MATERIALS AND METHODS

RR interval databases. We studied RR intervals in the MIT-BIH
AF database available at Physionet (www.physionet.org). It consists
of 10-h recordings from 25 patients with AF with 1,221,578 intervals,
of which 519,815 (42.5%) are labeled as AF. It and the other
Physionet databases have been widely used in the study of AF and
other aspects of heart rate variability. SampEn and multiscale entropy
(MSE) have been used to discriminate AF in long records (n =
20,000) of the MIT-BIH databases (2).

In addition, we analyzed 1,461 24-h RR interval time series from
Holter monitor recordings from the University of Virginia (UVa)
Health System Heart Station over the period of 2/2005 to 5/2008 that
were ordered for clinical reasons by UVa physicians. These were
manually overread for the presence of AF, with the correction of beat
labels as necessary. For each recording, the entire RR interval time
series was inspected with rhythm verification from the ECG every 5
min. Since the incidence of AF is very low before the age of 40 yr old
(3), we report on 940 Holters from patients (480 men) over this age.
We labeled a 12-beat segment as AF if it contained a single AF beat.
This approach lowers performance estimates but is clinically justified.
The Institutional Review Board of UVa approved the study.

Study design. We used the MIT-BIH dataset for algorithm devel-
opment and threshold determination. We then validated the algorithm
in the UVa data set.

Statistical analysis. We used logistic regression to make multiva-
riable models with different subsets of predictor variables (e.g.,
entropy, variability, and mean RR interval) and evaluated their ability
to detect AF by measuring the receiver operating characteristic (ROC)
curve area, which evaluates all possible threshold cutoffs. The signif-
icance of models and coefficients was evaluated using the Wald
x>-statistic adjusted for repeated measures (5). We compared the
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models and developed the COSEn algorithm as an optimal method for
detecting AF.

SampEn estimation. SampEn can be conceived as the CP that two
short templates that match within an arbitrary tolerance will continue
to match at the next point. A central idea for this work is that SampEn,
like any probability, is estimated more accurately when more events
are counted.

A data record consists of a series of N consecutive interbeat (RR)
intervals, xi, X2, . . ., X,, where the record may be as short as N = 12.
For a length m < n and starting point 7, the template x,,,(i) is the vector
containing the m consecutive intervals x;,x; + 1, . . ., Xi + m — 1. For a
matching tolerance » > 0, an instance where all the components of
xm(i) are within a distance r of any other x,,(j) in the record, is called
a match (or template match). For example, the template x»(1) matches
x2(3) if both Ix; — x31 < rand x> — x4l < r. Let B; denote the number
of matches of length m with template x,,(i) and A; denote the number
of matches of length m + 1 with template x,, + 1(i).

Let A = A, and B = 3B, denote, respectively, the total number of
matches of length m + 1 and m. The ratio p = A/B is then the CP that
subsequent points of a set of closely matching m intervals also remain
close and match. SampEn [or SampEn(m, r) to indicate its dependency
on m and r] is the negative natural logarithm of this probability, as
follows:

SampEn = —In(p) = —in(A/B) — In(B) — In(A)

We are challenged in interpreting SampEn because of its strong
dependency on the size of the tolerance r and in comparing entropy
estimates made using different values of r. Generally, smaller values
of r lead to higher and less confident entropy estimates because of
falling numbers of matches of length m and, to an even greater extent,
matches of length m + 1. To address this issue, a measure called the
quadratic entropy rate, based on densities rather than probability
estimates, was introduced (11). To normalize for the value of r,
SampEn was modified by dividing the probability p by the length of
the overall tolerance window 2r. The resulting quantity, called QSE,
is as follows:

QSE = —In[p/(2r)] = —In(p) + In(2r) = SampEn + In(2r)

With this formulation, estimates made with different values of r
measure the same inherent quantity and can be compared directly.
Another advantage to this approach is that that the tolerance r can be
optimally varied for each individual data record. This is analogous to
varying the bin widths of histograms to optimally depict the distribu-
tion of a particular data set.

An important aspect of the SampEn algorithm is that self-matches
are not counted (19, 20). This significantly reduces bias but contrib-
utes to the problem of falling counts of template matches to the point
that A and even B could be zero, leading to infinite or indeterminate
estimates. This becomes an increasing concern for short records. In
addition, the accuracy of a probability estimate A/B is dependent on
both the magnitude of the numerator A and denominator B. For
example, an estimate of 0.1 with 100/1,000 is more accurate than an
estimate with 1/10. Because QSE allows the flexibility to vary r,
inaccurate probability estimates can often be avoided. As discussed in
Ref. 11, one approach to accomplish this, called the minimum nu-
merator count method, is to vary r until a specified number of matches
A is attained. For example, as shown here, a minimum numerator
count of 5 was found to give optimally accurate estimates detecting
AF in short records of length n = 12.

RESULTS

Figure 1 shows ECGs from a patient in the MIT-BIH AF
database. Figure 1 shows the most common rhythms we
encountered: sinus thythm (A) and AF (B). The obvious dif-
ferences in regularity justify an approach to detecting AF based
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A sinus rhythm
COSEn=-3

B Atrial
fibrillation
COSEn=0

Fig. 1. ECGs from patient 202 in the MIT-
BIH atrial fibrillation (AF) database. While
the main exercise was to distinguish sinus
rhythm (A) from AF (B), two important prob-

C Ssinus rhythm

lems are sinus rhythm with ectopy (C) and
atrial flutter (AFL) with regular n:1 (here 2:1)
atrioventricular conduction (D). COSEn, co-
efficient of sample entropy (SampEn); PAC,
premature atrial contraction.

and PACs
COSEn=0

D Atrial 1
flutter 7
COSEn=-3 i

-

1 L 1

Time (seconds)

on entropy calculations. Two other ECGs from this patient are
shown, each representing more difficult problems, and they are
discussed further below (in COSEn: an entropy estimate opti-
mized for the detection of AF).

The rest of this section examines the selection of parameters
m and r and introduces the important notion of varying r until
a confident entropy estimate is possible. In particular, we
explored an approach using a minimum numerator count.
Unless otherwise noted, all the Holter results reflect COSEn
calculations performed once per hour using 12-beat segments,
with a total sample of 288 beats per 24-h recording.

Optimizing AF detection using entropy estimation: is m = 1
sufficient? Figure 2 shows justifications for selecting m to be 1.
Figure 2A shows an autocorrelation function of RR interval
data from AF and AFL compared with non-AF segments from
the MIT-BIH AF database. In AF, there was very reduced
correlation at lag = 1 beat, suggesting that there was no
additional information about order in longer templates and that
m = 1 is a valid selection. Figure 2B shows plots of the ROC
area for detecting AF as a function of m for RR interval time
series of lengths 8, 12, 16, 25, and 50. In each case, the best

>

B

distinction was made at m = 1. Such a short template length is
well suited to the clinical problem of rapid entropy estimation
using minimal calculations.

What should the minimum numerator count be? Figure 3A
shows the ROC area for distinguishing AF from non-AF in the
MIT-BIH and UVa databases as a function of the minimum
numerator count. (In 12-beat segments, the maximum number
of matches is 66.) The ROC area peaks near the count of 5,
suggesting this to be a reasonable minimum numerator count
for this clinical and numerical data set. Figure 3B shows the
directly related result that COSEn estimates are stable across a
wide range of minimum numerator counts.

What should be the initial value of r? While the minimum
numerator count approach should be robustly applicable, some
implementations call for rapid detection or parsimonious com-
putation. Thus, we determined an optimal value of r to suffice
in most cases of AF detection in 12 beats using the MIT-BIH
AF database. Figure 4A shows the effect of the value of r on
the important quantities in entropy estimation to detect AF
for the MIT-BIH and UVa data sets. The horizontal axis is r,
and the measured quantities are ROC area for AF detection,

- 1.04
GC) 1.001 ":‘:22 Fig. 2. Justification of selection of length m = 1 for entropy
© 0.9- - estimation. A: plot showing the average autocorrelation
% 0.75- © N=16  function for AF and AFL (filled symbols) and all other
3 o 0.8 N=12 rthythms (open symbols). There was less correlation be-
c 0501 © tween successive beats in AF, suggesting that m = 1 was
.g O 0.74 sufficient for entropy estimation. B: receiver operating
KW 8 characteristic (ROC) area for detecting AF or AFL for
9!:’ 0.254 all other rhythms 0.6+ different segment lengths and values of m. The value of 1
8 _ had a high discrimination even at segment lengths of 12
S 0.00{ AFIL 051 N=8 beats.
2 0o 1 2 3 4 5 6 012 4 6 8

m (lag) m
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. 0,

Fig. 3. Minimum numerator count approach for AF de- 10 _u-n-n-n-n-u-n-yJLtE\IH

tection using entropy estimation. A: ROC curve areas for 0.9l n/:I _..I-I-I-l-l-l-l-l-l—l-::::EiE:E:E:E ——

detecting AF in the MIT-BIH AF database and in 900 @ /. University of Virginia -14 .

? . . . . 0] atrial fibrillation
consecutive Holter monitor recordings for the University & c
L . - .. @© 0.8 LUl or flutter

of Virginia Heart Station as a function of the minimum %) n

numerator in the conditional probability (CP) fraction. QO 0.7 Q 2y e

Detection was optimal near a minimum numerator count & = o |

of 5. B: stability of the entropy estimates over a range of 064 /

minimum numerator counts. The solid lines are the me- ’ -31 T e

dian and the dotted lines are the 25th and 75th percentiles. 05 Ll ' a”'Ot er rh}'/thms
o 5 10 15 20 0 5 10 15 20

Minimum numerator count

average CP of a match, and proportions of 12-beat segments
that have no template matches (CP = 0) or all matches (CP =
1). The optimal selection for r should have the ROC near
maximal, average CP near 0.5, and near-minimal p(CP = 0)
and p(CP = 1). This is satisfied for r = 30 ms, as noted by
vertical shaded bar, and we used this as our initial value of r.

Heart rate adds information to entropy in detecting AF. To
determine the impact of the heart rate itself on the detection
algorithms, we used logistic regression analysis. Heart rate was
introduced as a predictor variable along with corrected entropy
to distinguish AF from non-AF in the MIT-BIH AF database.
The regression coefficients for both heart rate and entropy were
significant, suggesting that both variables add independent
information. Since the coefficients were approximately equal
in magnitude but opposite in sign, we adopted the convenient
method of subtracting the logarithm of the mean RR interval
from the corrected entropy estimate.

COSEn: an entropy estimate optimized for the detection of
AF. Thus, the final algorithm was to calculate SampEn, allow-
ing r to vary from 30 ms if necessary so that the CP was
reasonably estimated, and calculate COSEn = SampEn —
In(2r) — In(mean RR interval). We sought a COSEn threshold
that would lead to an observed AF burden of 43% in the
MIT-BIH data set, and we found this to be —1.4. We found this
cutoff to have a sensitivity of 91% and a specificity of 94% in
the MIT-BIH data set. Thus, the final step was to assign the
diagnosis of AF for values greater than —1.4.

Comparison with other methods. Figure 4B compares meth-
ods of AF detection using entropy and variability. The ordinate
is the ROC area for AF detection in the MIT-BIH database, and
the abscissa is the number of beats. We compared SampEn
with m = 1 and r = 0.2 (SD), a popular formulation, and the
coefficient of variation (CV), the SD normalized by the mean

A

Fig. 4. A: quantities important for entropy estimation. The
results shown in the plot justify the initial selection of
tolerance r = 30 ms (vertical shaded bar) to detect AFin 12 0.754
beats. At that point, the probability that a template will have
no matches [p(CP) = 0] was the same as the probability
it will find all matches [p(CP) = 1]. For r = 30 ms, the
ROC area was near 1 and the average CP was near 0.5.
B: improved diagnostic performance of COSEn compared  0.25-
with coefficient of variation and SampEn using standard

0.50+

Minimum numerator count

RR interval. COSEn reached a high ROC area in as few as 10
beats, whereas SampEnt, under the usual conditions, required
as many as 50 or more beats, and CV never reached as high a
value of ROC area.

Examples. Figure 5 shows an example of COSEn analysis in
a patient from the MIT-BIH AF data set that had paroxysmal
AF and for whom ECGs are shown in Fig. 1. The blue dots
show points of agreement between COSEn analysis and the
electrocardiographer, whether in sinus rhythm (Fig. 5A) or AF
(Fig. 5B). As noted above, the points in Fig. 5, C and D,
confound entropy analysis. Figure 1C shows sinus rhythm with
frequent ectopy, in this case, atrial in origin. The RR intervals
were irregular, and the resulting entropy estimate had a high
value, more like AF than sinus rhythm. Figure 5D shows AFL
with 2:1 conduction. The RR intervals were very regular, and
the entropy estimate was low, more like sinus rthythm than AF.
These two scenarios, frequent ectopy and AFL, will not be
correctly labeled by entropy estimates and are important in
understanding and interpreting entropy estimates of heart rate.

Validation of COSEn in the UVa data set. As noted, Fig. 3
shows the ROC area for detecting AF/AFL in both the MIT-
BIH and UVa data sets using COSEn calculations on 12 beats
every hour. The distinction between groups was very good,
with ROC areas of 0.9 or better. The reduced performance in
the UVa data set may be due to our practices of labeling a
12-beat segment as AF if it contained only a single AF label,
the inclusion of AFL RR interval time series as AF despite low
entropy estimates, and the effect of ectopic beats during sinus
rhythm.

Figure 6 shows histograms of entropy estimates for AF/AFL
and all other rhythms in the MIT-BIH and UVa datasets using
all the 12-beat segments. Generally, AF detection was better in
the MIT-BIH data set, where it was more prevalent. We

B

approach of taking r to be 20% of the sample SD.

0.00

") ocaes 1.0 COSEn
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Blue dots —agreement

Red —COSEn alone dx AF

Green —EKG alone dx AF

Green bar -EKG dx AF

Purple bar —-COSEn dx AF

attribute the overlap in the tails of the distributions to the

practices cited above.

We investigated the correlation of AF burdens detected
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using COSEn of 12-beat segments every hour with those fewer false positives.

derived from an ECG inspection of the entire record. For the
940 patients over the age of 40 yr old, the AF burden using
COSEn of only 12-beat segments measured only once every
hour was compared with that from ECG inspection of the entire
recording. The correlation coefficient r between the two meth-
ods was 0.88, but a more clinically useful way to quantify the
performance is as a binary diagnosis of AF versus non-AF.
Table 1 shows the confusion matrix for this type of analysis,
where, for purposes of comparison, a burden exceeding 10%
for both methods was used to diagnose AF. The sensitivity and
specificity of COSEn were 91% and 98%, respectively, and the
positive predictive value (PPV) was 63%. The majority of the
79 false positives were recordings with frequent, complex
ventricular ectopy or electronic pacemakers. Accounting for
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these cases can significantly increase the performance. For
example, discounting segments with >2 ectopic beats (as
labeled by the Holter) increases the PPV to 72% and has 27

Age-related changes in entropy of sinus rhythm and AF.
While heart rate dynamics during sinus rhythm reflect complex
and varying coupling of the sinus node to the autonomic
nervous system, dynamics during AF should result only from
atrioventricular nodal properties. Figure 7 shows mean COSEn
measured from 12-beat segments every hour in UVa Holters
that contained only sinus rhythm or AF as a function of age.
Figure 7B shows the same data on a log scale to clarify the
change in COSEn of sinus rhythm in the young. Entropy of
sinus rhythm rose over the first 10—15 yr of life and then fell,
consistent with a prior report (13). Note that the COSEn of
sinus rhythm in the elderly was sometimes high. This was
usually due to frequent ventricular ectopy. In AF, on the other
hand, COSEn was higher (P < 0.0001) but changed less with

Fig. 6. Distributions of COSEn for AF and
non-AF in the MIT-BIH (A) and University of
Virginia (B) data sets. Note the much larger
size of the University of Virginia data set as
Atrial fibrillation  well as the reduced proportion of AF and AFL.

2102 ‘2 Ainc uo Bio ABojoisAyd-ueaydfe woly papeojumoq



http://ajpheart.physiology.org/

H324

Table 1. Diagnostic performance of COSEn using 12-beat
segments every hour

Holter AF burden

COSEn AF burden =10% <10% Total
=10% 131 79 210
<10% 13 717 730
Total 144 796 940

COSEn, coefficient of sample entropy; AF, atrial fibrillation.

age. Cases of low COSEn labeled AF were usually due to AFL.
The slope of the regression line fell from —0.0082 in sinus
rhythm to —0.0049 in AF.

DISCUSSION

We studied the optimization of entropy estimation for the
important clinical problem of detecting AF in short heart rate
records. Our major innovation is the idea that there should
be systematic choice of parameters to increase confidence in
the CP estimate that is at the core of the entropy estimation. To
achieve the necessary minimum numerator counts for this
clinical problem, we propose the template length parameter
m = 1 and that the tolerance parameter r be allowed to vary.
We propose that the resulting entropy estimate, the negative
natural logarithm of CP, be corrected for the choice of r (11),
allowing a direct comparison of results despite differences in r.
In addition, we propose correction of the entropy estimate by
the mean heart rate because it contributed significant and
independent diagnostic information in the detection of AF.
This optimized entropy estimation technique we call COSEn.

We selected parameters for the detection of AF in short RR
interval time series using these ideas. First, we selected m = 1
based on autocorrelation analysis. Second, we selected an
initial value of r that optimized the parameters of the CP
calculation. Third, for each segment, we assured a sufficient
number of matches of length m + 1, the numerator of the CP
fraction; we call this the minimum numerator count. We
allowed r to vary until a minimum numerator count was
achieved and normalized the entropy estimate by In(2r) (11).
Finally, we normalized the entropy estimate by the mean heart
rate.

The fourth step, normalization by In(2r), is a new consider-
ation in entropy estimation in biological and clinical time series
analysis. In particular, this is a significant departure from the

o sinus rhythm

Fig. 7. Entropy of sinus rhythm falls with age more
so than that of AF. Both plots show COSEn as a
function of age. Open symbols are data from
Holters with all AF (N = 80), and filled symbols
are data from Holters with all sinus rhythm (n =
1,250). The linear plot (A) also shows regression
lines (for AF, R = —0.14 and P = 0.21; and for
sinus rhythm, R = —0.41 and P < 0.0001). The
logarithmic plot (B) shows a rise in COSEn in the
first years of life.

AF DETECTION USING COSEn, THE COEFFICIENT OF SAMPLE ENTROPY

usual practice of taking r as a fixed proportion of the SD of the
time series values. Previously, ApEn estimators follow the
prescription that » be a fraction of the sample SD, usually 0.2.
To assure non-zero values in the CP calculation, ApEn allows
templates to match themselves. This results in a bias of ApEn
toward lower values (15). Porta and coworkers (16) developed
conditional corrected entropy, which penalizes entropy esti-
mates when few matches are found. We (12, 19, 20) later
developed SampEn as a more robust entropy estimate that does
not allow self-matches, and we and Richman (10, 11, 18) have
reported on its statistical properties. SampEn is the basis for
MSE analysis as developed by Costa and coworkers (1) and
implemented in AF detection in long records.

We (12) previously proposed a rational selection of param-
eters from plots of an estimate of efficiency (a combination of
low error and CP near 0.5) as a function of m and r for neonatal
heart rate data. We also propose that the minimum numerator
count be selected so as to assure confidence in the count and to
avoid CP too near O or too near 1; here, there will may little
distinction between groups.

Ramdani and coworkers (17) used SampEn to characterize
postural swaying and systematically assessed choices of m and
r. They picked m based on the convergence of SampEn results
and then picked r based on the measurement of relative errors.
Richman (18) proposed the selection of m based on the amount
of additional information gained, stopping with the smallest
value that added new information to the estimate at template
length m — 1.

Importantly, we note that these parameter values were de-
rived in ECG databases for the specific purpose of detecting
AF. They might differ for other data sets from other kinds of
sources or from these data sets for other clinical questions.
Future studies of entropy estimation should systematically
evaluate choices for these parameters.

Limitations: the problem of AFL. The strategy of diagnosing
atrial arrhythmia using RR intervals is particularly poorly
suited to detecting AFL because the ventricular rhythm can
either be fixed at integer fractions of the atrial rate, which is
usually near 300 beats/min, or can be as variable as in AF.
Despite the obvious impossibility of diagnosing AFL with a
regular ventricular rthythm using our approach, we included
AFL with AF because the clinical imperative for AFL is the
same as AF, especially with regard to the important issue of
anticoagulation. This is one of the reasons why the diagnostic
performance of our (or anyone’s) numerical algorithm is better

o sinus rhythm
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in the MIT-BIH AF database and worse in the real-world UVa
database. For example, removing the 18 patients with AFL
from our analysis increased the ROC area from 0.928 to 0.955.
We know, though, of no better approach that does not use the
atrial electrogram.

Clinical implications. An important implementation for this
method to detect AF in short records is the measurement of AF
burden from single-lead pacemakers or defibrillators. New
onset or new recognition of AF in patients with reduced left
ventricular systolic function is common, and therapeutic deci-
sions are made easier by an accurate estimate of the AF burden.
At the same time, these devices have limited storage and
calculating capacity, and a simple algorithm requiring only a
few RR intervals might find widespread clinical use.

We considered the clinical impact of the imperfect diagnos-
tic performance of this efficient algorithm. Misdiagnosis of
AFL as non-AF was frequent, leading to lower estimates of AF
burden using COSEn in our real-world Holter data set. In the
clinical context, mistaking an AF burden of 100% for 50% is
not a clinical catastrophe, as therapy with anticoagulation
would be undertaken for either. Mistaking an AF burden of 0%
for 1% is probably not important either, as therapy is not likely
to result for either. Reporting an AF burden of 0% when it is
higher than, say, 5%, is where trouble might lie, as this
represents a failure to diagnose clinically important AF. We
found this to be the case in 10 of 642 Holters in patients over
the age of 40 yr old who had either sinus rhythm or AF
throughout the recording, and 7 of them had AFL, our nemesis.
While this result will vary depending on the prevalence of AF,
it is reassuring that missing an AF/AFL burden of >5% does
not seem to be common.

Entropy of sinus rhythm rises until an age of 10 yr old or so
and then falls with aging, consistent with the idea of reduced
complex physiological variability (13) or altered coupling of
the sinus node to the autonomic nervous system. We find,
though, that entropy of AF does not depend on age. While the
mechanism is not known, one explanation might be that the
impulse conduction properties of the atrioventricular node are
more resistant to aging than the impulse-making properties of
the sinus node. Whatever the cause, an appealing clinical result
is enhanced diagnostic accuracy of COSEn in the elderly,
where AF is increasingly prevalent.

Summary and conclusions. We have developed new meth-
ods for systematic approaches to entropy estimation in short
time series and implemented them in the important clinical
problem of detecting AF. We call the result COSEn, which
detects AF in as few as 12 beats. Here, we use new ideas about
how to estimate entropy in very short time series of all
descriptions and uniquely allow for variation in the tolerance
measure r. Entropy estimation may be a useful adjunct for
patients with single-lead CIEDs, a population at particular risk
for AF and all the clinical ills that follow.
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